+0  
 
0
255
1
avatar

Find the size of the smallest angle between the two hands of a clock displaying these times. 10:20, 6:55, 4:35, 2:27 and 11:09

Guest Jun 15, 2017
 #1
avatar+19620 
+1

Find the size of the smallest angle between the two hands of a clock displaying these times.

10:20, 6:55, 4:35, 2:27 and 11:09

 

1. angular speed = \(\omega\)

minutes hand: \(\omega_{\text{m}} = \frac{360^{\circ}}{1\ h}\)

hour hand: \(\omega_{\text{h}} = \frac{360^{\circ}}{12\ h}\)

 

2. angle between the two hands = \(\alpha\)

\(\begin{array}{rcll} \alpha &=& ( \omega_{\text{m}} - \omega_{\text{h}} ) \cdot t \\ \alpha &=& \Big( \frac{360^{\circ}}{1\ h} - \frac{360^{\circ}}{12\ h} \Big)\cdot t \\ \alpha &=& 360^{\circ}\cdot \Big( \frac{1}{1\ h} - \frac{1}{12\ h} \Big)\cdot t \\ \mathbf{\alpha} & \mathbf{=} & \mathbf{360^{\circ}\cdot \frac{11}{12\ h} \cdot t} \\ \end{array} \)

 

3. Solution for 10:20, 6:55, 4:35, 2:27 and 11:09

\(\begin{array}{|rcll|} \hline t=10:20=10.\bar{3}\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 10.\bar{3}\ h \\ & \alpha & = & 3410^{\circ} \\ & \alpha & = & 3410^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{170^{\circ}} \\\\ t=6:55=6.91\bar{6}\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 6.91\bar{6}\ h \\ & \alpha & = & 2282.5^{\circ} \\ & \alpha & = & 2282.5^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{122.5^{\circ}} \\\\ t=4:35=4.58\bar{3}\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 4.58\bar{3}\ h \\ & \alpha & = & 1512.5^{\circ} \\ & \alpha & = & 1512.5^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{72.5^{\circ}} \\\\ t=2:27=2.45\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 2.45\ h \\ & \alpha & = & 808.5^{\circ} \\ & \alpha & = & 808.5^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{88.5^{\circ}} \\\\ t=11:09=11.15\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 11.15\ h \\ & \alpha & = & 3679.5^{\circ} \\ & \alpha & = & 3679.5^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{79.5^{\circ}} \\\\ \hline \end{array}\)

 

 

laugh

heureka  Jun 15, 2017
edited by heureka  Jun 15, 2017

18 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.