+0  
 
0
142
3
avatar

(2x+1)/(x^(2)-1)+(x)/(x^(2)-3x+2)=4

Guest Jul 16, 2017
Sort: 

3+0 Answers

 #1
avatar+90998 
+2

(2x+1)/(x^(2)-1)+(x)/(x^(2)-3x+2)=4

 

I'll try and make sense of your question first

 

\(\frac{(2x+1)}{(x^{2}-1)}+\frac{(x)}{(x^{2}-3x+2)}=4\qquad x\ne\pm1\\ \frac{(2x+1)}{(x-1)(x+1)}+\frac{(x)}{(x-2)(x-1)}=4 \qquad x\ne\pm1,\quad x\ne2\\ \frac{(2x+1)(x-2)}{(x-1)(x+1)(x-2)}+\frac{(x)(x+1)}{(x-2)(x-1)(x+1)}=4\\ (2x+1)(x-2)+(x)(x+1)=4(x-1)(x+1)(x-2)\\ 2x^2-4x+x-2+x^2+x=4(x-1)(x+1)(x-2)\\ 3x^2-3x+x-2=(x-2)(4x^2-4)\\ 3x^2-2x-2=4x^3-4x-8x^2+8\\ 0=4x^3-4x+2x-8x^2-3x^2+8+2\\ 0=4x^3-11x^2-2x+10\\ \)

 

Here is the approximate answers

https://www.wolframalpha.com/input/?i=4x%5E3-11x%5E2-2x%2B10%3D0

Melody  Jul 16, 2017
 #2
avatar
+1

Thank you. I'm having doubts about my answer but now I see where I am wrong

Guest Jul 16, 2017
 #3
avatar+26328 
+2

This should help you visualize the equation:

 

.

Alan  Jul 16, 2017

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details