+0  
 
0
41
2
avatar

Find the sum of the \(x\) coordinates of all possible positive integer solutions to \(\frac{1}{x} +\frac{1}{y} = \frac{1}{7}\)

 Jan 30, 2019
 #1
avatar+95866 
+1

1/x  +  1/y  = 1/7

 

x + y  =  xy / 7

 

7 (x + y ) = xy

 

7 =   xy / ( x + y)

 

x = 8 , y = 56

x = 14, y = 14   [ if x , y  are not distinct ]

x = 56, y = 8

 

Sum =  8 + 14 + 56  =   78

 

 

cool cool cool

 Jan 30, 2019
 #2
avatar+95866 
+1

Here's another way to see this :

 

1/x  +  1/y =   1/7

 

xy = 7 (x + y)

 

7(x + y) - xy = 0

 

7x + 7y - xy = 0

 

7x + y(7 - x) = 0

 

7x  =  -y (7 - x) 

 

7x =  y(x - 7)

 

y =   7x / ( x - 7)

 

y = 56   when x = 8

y = 14   when x = 14

y = 8 when x = 56

 

etc.....

 

 

cool cool cool

 Jan 30, 2019

14 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.