We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
113
2
avatar

Find the sum of the \(x\) coordinates of all possible positive integer solutions to \(\frac{1}{x} +\frac{1}{y} = \frac{1}{7}\)

 Jan 30, 2019
 #1
avatar+101255 
+1

1/x  +  1/y  = 1/7

 

x + y  =  xy / 7

 

7 (x + y ) = xy

 

7 =   xy / ( x + y)

 

x = 8 , y = 56

x = 14, y = 14   [ if x , y  are not distinct ]

x = 56, y = 8

 

Sum =  8 + 14 + 56  =   78

 

 

cool cool cool

 Jan 30, 2019
 #2
avatar+101255 
+1

Here's another way to see this :

 

1/x  +  1/y =   1/7

 

xy = 7 (x + y)

 

7(x + y) - xy = 0

 

7x + 7y - xy = 0

 

7x + y(7 - x) = 0

 

7x  =  -y (7 - x) 

 

7x =  y(x - 7)

 

y =   7x / ( x - 7)

 

y = 56   when x = 8

y = 14   when x = 14

y = 8 when x = 56

 

etc.....

 

 

cool cool cool

 Jan 30, 2019

22 Online Users

avatar
avatar