We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
82
1
avatar+112 

Find the values of k for which [2x^2 + kxy + 3y^2 - 5y - 2]factors into two linear factor.

 

I really need help on this.

 Oct 18, 2019
edited by AoPS.Morrisville  Oct 18, 2019
 #1
avatar+23326 
+4

Find the values of k for which \(2x^2 + {\color{red}k}xy + 3y^2 - 5y - 2\) factors into two linear factor.

Source: https://www.askiitians.com/iit-jee-algebra/quadratic-equations-and-expressions/resolution-of-a-quadratic-function-into-linear-factors.aspx

 

In general:

\(\begin{array}{|lrcll|} \hline \text{Let } f(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c \\ \text{writing this in descending powers of } y \text{ and equating to zero, we have } \\ by^2 + 2(hx + f)y + (ax^2 + 2gx + c) = 0 \\\\ \text{this is a quadratic equation in } y. \\ \text{Solving this for } y \text{, we get } y = \dfrac{ - (hx+f) \pm \sqrt{ (hx+f)^2 -b(ax^2+2gx+c)} } {b} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline \text{The quantity under radical must be perfect square, }\\ \text{which is quadratic in }x\text{ and for the desired result, its discriminant must be zero: } \\\\ (hx+f)^2 -b(ax^2+2gx+c) \\ = h^2x^2+2hfx+f^2-abx^2-2bgx-bc \\ = (h^2-ab)x^2+2(hf-bg)x+(f^2-bc) \\\\ x = \dfrac{-2(hf-bg)\pm \sqrt{(-2(hf-bg))^2-4(h^2-ab)(f^2-bc)} } {2(h^2-ab)} \\ x = \dfrac{-2(hf-bg)\pm \sqrt{(4(hf-bg)^2-4(h^2-ab)(f^2-bc)} } {2(h^2-ab)} \\ x = \dfrac{-2(hf-bg)\pm 2\sqrt{(hf-bg)^2- (h^2-ab)(f^2-bc)} } {2(h^2-ab)} \\\\ (hf-bg)^2- (h^2-ab)(f^2-bc) = 0 \\ h^2f^2-2hfbg+b^2g^2-h^2f^2+h^2bc+abf^2-ab^2c = 0 \\ -2hfbg+b^2g^2 +h^2bc+abf^2-ab^2c = 0 \quad | \quad : b \\ -2hfg+bg^2 +h^2c+af^2-abc = 0 \quad | \quad \cdot (-1) \\ 2hfg-bg^2 -h^2c-af^2+abc = 0 \\ \mathbf{abc+2hfg-af^2-bg^2-h^2c = 0} \quad | \text{ The condition of two linear factors } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline f(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c \\ \hline 2x^2 + {\color{red}k}xy + 3y^2 - 5y - 2 \\ \text{Here, } a=2,\ 2h={\color{red}k},\ b=3, g=0,\ 2f = -5,\ c= -2 \\\\ \mathbf{abc+2hfg-af^2-bg^2-h^2c} &=& \mathbf{0} \\ 2\cdot 3\cdot(-2)+k\cdot\left( \dfrac{-5}{2} \right)\cdot 0 -2\cdot \left( \dfrac{-5}{2} \right)^2 - 3\cdot 0^2 -\left( \dfrac{k}{2} \right)^2\cdot(-2) &=& 0 \\ -12 -\dfrac{25}{2} +\dfrac{k^2}{2} &=& 0 \quad | \quad \cdot 2 \\ -24 - 25 + k^2 &=& 0 \\ -49 + k^2 &=& 0 \\ k^2 &=& 49 \\ \mathbf{k} &=& \mathbf{\pm 7} \\ \hline \end{array}\)

 

Result:

\(\begin{array}{|lrcll|} \hline k = 7: \\ & (2x+y-2)(x+3y+1)&=& 2x^2+6xy+2x+xy+3y^2+y-2x-6y-2 \\ &&=& 2x^2+{\color{red}7}xy+3y^2-5y-2 \\\\ k = -7: \\ & (2x-y+2)(x-3y-1)&=& 2x^2-6xy-2x-xy+3y^2+y+2x-6y-2 \\ &&=& 2x^2{\color{red}-7}xy+3y^2-5y-2 \\ \hline \end{array} \)

 

laugh

 Oct 18, 2019

18 Online Users

avatar
avatar
avatar