+0  
 
0
309
1
avatar

FIND THE ZEROES OF 5X^3-8X^2-5X+2

Guest May 14, 2015

Best Answer 

 #1
avatar+78553 
+10

5x^3 - 8x^2 - 5x  + 2 = 0 ..this doesn't appear to factor....let's use the "Rational Zeroes" Theorem to  find a root - if possible...

The possible roots  are ± 1, ± 2 and ± 2/5

I see that 2 is a root......let's use synthetic division to find the next polynomial

 

2       5   -8     -5     2

              10      4    -2

         5     2     -1    0

 

And the next polynomial is

5x^2 + 2x -1   = 0

This will not factor...using the on-site solver [and the Quadratic Formula] ...the other two roots are :

 

$${\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{1}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{6}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{5}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{6}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{5}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.689\: \!897\: \!948\: \!556\: \!635\: \!6}}\\
{\mathtt{x}} = {\mathtt{0.289\: \!897\: \!948\: \!556\: \!635\: \!6}}\\
\end{array} \right\}$$

Here's a graph......https://www.desmos.com/calculator/hpqotand0v

 

  

CPhill  May 14, 2015
Sort: 

1+0 Answers

 #1
avatar+78553 
+10
Best Answer

5x^3 - 8x^2 - 5x  + 2 = 0 ..this doesn't appear to factor....let's use the "Rational Zeroes" Theorem to  find a root - if possible...

The possible roots  are ± 1, ± 2 and ± 2/5

I see that 2 is a root......let's use synthetic division to find the next polynomial

 

2       5   -8     -5     2

              10      4    -2

         5     2     -1    0

 

And the next polynomial is

5x^2 + 2x -1   = 0

This will not factor...using the on-site solver [and the Quadratic Formula] ...the other two roots are :

 

$${\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{1}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{6}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{5}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{6}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{5}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.689\: \!897\: \!948\: \!556\: \!635\: \!6}}\\
{\mathtt{x}} = {\mathtt{0.289\: \!897\: \!948\: \!556\: \!635\: \!6}}\\
\end{array} \right\}$$

Here's a graph......https://www.desmos.com/calculator/hpqotand0v

 

  

CPhill  May 14, 2015

15 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details