Find all values of x such that: x/(x - 5) = 4/(x - 4) + 12/(x^2 - 9x + 20)
We have:
\(\frac{x}{x-5}=\frac{4}{x-4}+\frac{12}{x^2-9x+20}\)
The best way to approach this is to get rid of the fractions.
We notice that x2-9x+20 = (x-4)(x-5)
Now we multiply both sides by x2-9x+20
\((x^2-9x+20)(\frac{x}{x-5})=(x^2-9x+20)(\frac{4}{x-4}+\frac{12}{x^2-9x+20})\)
This equals:
\(x(x-4)=4(x-5)+12\)
\(x^2-4x=4x-20+12\)
\(x^2-8x+8=0\)
We notice this is not factorable, so we use the quadratic formula: (+- means plus minus)
\({x}=\frac{8+-\sqrt{32}}{2}\)
\({x}_{1,2}=4+2\sqrt{2}, 4-2\sqrt{2}\)