+0

# finding coordinates on a line

0
164
1

the equation of a line is x + 3y - 24 = 0. write the coordinates of a point on the line for each of the following conditions:

a) the x-coordinate is equal to the y-coordinate.

b) the x-coordinate is three times as great as the y-coordinate.

c) the y-coordinate is four greater than the x-coordinate.

Guest Aug 1, 2017

#1
+6351
+3

x + 3y - 24  =  0

a)     Plug in  y  for  x  and solve for  y  .

y + 3y - 24  =  0

4y - 24  =  0

4y  =  24

y  =  6

The coordinate  =  (x, y)  =  (y, y)  =  (6, 6)

b)     Plug in  3y  for  x  and solve for  y  .

(3y) + 3y - 24  =  0

6y - 24  =  0

6y  =  24

y  =  4

The coordinate  =  (x, y)  =  (3y, y)  =  (3*4, 4)  =  (12, 4)

c)     Plug in  x + 4  for  y  and solve for  x  .

x + 3y - 24  =  0

x + 3(x + 4) - 24  =  0

x + 3x + 12 - 24  =  0

4x - 12  =  0

4x  =  12

x  =  3

The coordinate  =  (x, y)  =  ( x,  x + 4  )  =  ( 3,  3 + 4  )  =  (3, 7)

The graph here verifies that these coordinates are points on the line.

hectictar  Aug 1, 2017
edited by hectictar  Aug 2, 2017
Sort:

#1
+6351
+3

x + 3y - 24  =  0

a)     Plug in  y  for  x  and solve for  y  .

y + 3y - 24  =  0

4y - 24  =  0

4y  =  24

y  =  6

The coordinate  =  (x, y)  =  (y, y)  =  (6, 6)

b)     Plug in  3y  for  x  and solve for  y  .

(3y) + 3y - 24  =  0

6y - 24  =  0

6y  =  24

y  =  4

The coordinate  =  (x, y)  =  (3y, y)  =  (3*4, 4)  =  (12, 4)

c)     Plug in  x + 4  for  y  and solve for  x  .

x + 3y - 24  =  0

x + 3(x + 4) - 24  =  0

x + 3x + 12 - 24  =  0

4x - 12  =  0

4x  =  12

x  =  3

The coordinate  =  (x, y)  =  ( x,  x + 4  )  =  ( 3,  3 + 4  )  =  (3, 7)

The graph here verifies that these coordinates are points on the line.

hectictar  Aug 1, 2017
edited by hectictar  Aug 2, 2017

### 26 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details