+0  
 
+5
852
4
avatar

how do i find the simplest form of the quotient with the given problem of: sqrt3(162)/sqrt3(2)??

 Jun 2, 2016

Best Answer 

 #1
avatar+37157 
+5

I will assume you mean

\(\sqrt[3]{162}\) /\( \sqrt[3]{2}\)

 

cubrt(162) / cubrt(2)  =  cubrt(27 * 6)  /  cubrt (2) =  3 cubrt(6) / cubrt (2)  = 3 cubrt(2)cubrt(3) / cubrt(2) = 3 cubrt (3)

 Jun 2, 2016
 #1
avatar+37157 
+5
Best Answer

I will assume you mean

\(\sqrt[3]{162}\) /\( \sqrt[3]{2}\)

 

cubrt(162) / cubrt(2)  =  cubrt(27 * 6)  /  cubrt (2) =  3 cubrt(6) / cubrt (2)  = 3 cubrt(2)cubrt(3) / cubrt(2) = 3 cubrt (3)

ElectricPavlov Jun 2, 2016
 #2
avatar
0

thank you!

 Jun 2, 2016
 #3
avatar
0

ElectricPavlov is right. She/he is awesome. Sorry. I don't know if you are a girl or boy.

 Jun 2, 2016
 #4
avatar+1904 
+5

The way ElectricPavlov solved the problem is the short way.  Here is the long way.

 

\(\frac{\sqrt[3]{162}}{\sqrt[3]{2}}\)

 

\(\frac{\sqrt[3]{27\times6}}{\sqrt[3]{2}}\)

 

\(\frac{\sqrt[3]{27}\sqrt[3]{6}}{\sqrt[3]{2}}\)

 

\(\frac{3\sqrt[3]{6}}{\sqrt[3]{2}}\)

 

\(\frac{3\sqrt[3]{6}\sqrt[3]{4}}{\sqrt[3]{2}\sqrt[3]{4}}\)

 

\(\frac{3\sqrt[3]{6\times4}}{\sqrt[3]{2\times4}}\)

 

\(\frac{3\sqrt[3]{24}}{\sqrt[3]{8}}\)

 

\(\frac{3\sqrt[3]{8\times3}}{\sqrt[3]{8}}\)

 

\(\frac{3\sqrt[3]{8}\sqrt[3]{3}}{\sqrt[3]{8}}\)

 

\(\frac{3\times2\sqrt[3]{3}}{\sqrt[3]{8}}\)

 

\(\frac{6\sqrt[3]{3}}{\sqrt[3]{8}}\)

 

\(\frac{6\sqrt[3]{3}}{2}\)

 

\(3\sqrt[3]{3}\)

.
 Jun 2, 2016
edited by gibsonj338  Jun 2, 2016

0 Online Users