+0  
 
0
81
2
avatar

For all real numbers x find the minimum value of \((x + 12)^2 + (x + 7)^2 + (x + 3)^2 + (x - 4)^2 + (x - 8)^2\)

 May 14, 2021
 #1
avatar
0

Setting the derivative to 0, we get minimum value of 284.

 May 14, 2021
 #2
avatar+32894 
+2

Expanding and simplifying results in   5 x^2 + 20 x + 282         min occurs at x = - b/2a = -2 

   sub in that value for 'x' to calcualte the min value of the fxn = 262   

 May 14, 2021

16 Online Users

avatar
avatar
avatar