We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
36
1
avatar+17 

For what negative value of k is there exactly one solution to the system of equations

\(\begin{align*} y &= 2x^2 + kx + 6 \\ y &= -x + 4? \end{align*}\)

 Oct 10, 2019

Best Answer 

 #1
avatar+19324 
+2

First, set the equations =

 

2x^2+kx+6 = -x+4        collect like terms

2x^2 + x(k+1) +2 = 0    now, if the discriminant = 0 there is only one root

 

b^2 - 4ac = 0

(k+1)^2 - 4 (2)(2) = 0

k^2 +2k +1 - 16 =0

k^2 + 2k -15 =0

(k+5)(k-3) = 0       so k = -5 or  3      Q asks for the negative value    -5

 
 Oct 10, 2019
 #1
avatar+19324 
+2
Best Answer

First, set the equations =

 

2x^2+kx+6 = -x+4        collect like terms

2x^2 + x(k+1) +2 = 0    now, if the discriminant = 0 there is only one root

 

b^2 - 4ac = 0

(k+1)^2 - 4 (2)(2) = 0

k^2 +2k +1 - 16 =0

k^2 + 2k -15 =0

(k+5)(k-3) = 0       so k = -5 or  3      Q asks for the negative value    -5

 
ElectricPavlov Oct 10, 2019

10 Online Users

avatar