+0  
 
0
56
4
avatar

Four positive integers $p,q,r,s$ satisfy the following equations:


\(\begin{align*} pq+2p+q&=348 \\ qr+4q+3r&=373 \\ rs+8r+6s&=544 \end{align*}\)

 

What are $p,q,r,$ and $s$?

 Nov 5, 2020
 #1
avatar
0

By computer program p = 34, q = 8, r = 16, and s = 27.

 Nov 5, 2020
 #2
avatar
+1

a=0;p=0; b=0;c=0;d=0;n=a*b+2*a+b;m=b*c+4*b+3*c;l=c*d+8*c+6*d;if(n==348 and m==373 and l==544, goto loop, goto next);loop:p=p+1;printp," =",a,b,c,d;next:a++;if(a<50, goto5,0);a=0;b++;if(b<50, goto5, 0);a=0;b=0;c++;if(c<50, goto5,0);a=0;b=0;c=0;d++;if(d<50, goto5, discard=0;printp

 

p = 34, q = 8, r = 31, s = 8

 Nov 5, 2020
 #3
avatar
+1

See algebraic solution #2 here:  https://web2.0calc.com/questions/how-do-i-solve-this_22

Guest Nov 5, 2020
 #4
avatar+111546 
0

Thanks guests and Alan   cool laugh

Melody  Nov 5, 2020

32 Online Users

avatar