+0  
 
0
2267
1
avatar+4 

from a distance of 1210 feet from a spotlight, the angle of elevation to a cloud base is 41°. Find the height of the cloud base to the nearest foot.

 Nov 4, 2014

Best Answer 

 #1
avatar+33665 
+5

Use  tangent:  tan(angle) = opposite/adjacent

 

Here:  tan(41°) = height/1210

so:  height = 1210*tan(41°)

$${\mathtt{height}} = {\mathtt{1\,210}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{41}}^\circ\right)} \Rightarrow {\mathtt{height}} = {\mathtt{1\,051.836\: \!952\: \!757\: \!36}}$$

height = 1052 ft to the nearest foot.

.

 Nov 5, 2014
 #1
avatar+33665 
+5
Best Answer

Use  tangent:  tan(angle) = opposite/adjacent

 

Here:  tan(41°) = height/1210

so:  height = 1210*tan(41°)

$${\mathtt{height}} = {\mathtt{1\,210}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{41}}^\circ\right)} \Rightarrow {\mathtt{height}} = {\mathtt{1\,051.836\: \!952\: \!757\: \!36}}$$

height = 1052 ft to the nearest foot.

.

Alan Nov 5, 2014

1 Online Users

avatar