+0  
 
0
32
1
avatar

From the diagram below, find the positive difference in the x-coordinates when lines l and m reach y = 15. 

Guest Apr 8, 2018
Sort: 

1+0 Answers

 #1
avatar+6943 
+2

Line  \(l\)  appears to have a slope of  \(-\frac53\)  and a y-intercept of  5 .

 

So the equation of line  \(l\)  is           \(y\,=\,-\frac53x+5\)

 

On line  \(l\) ,  when  y  =  15 .....

 

\(15\,=\,-\frac53x+5\\~\\ 10\,=\,-\frac53x\\~\\ -\frac35\cdot10\,=\,x\\~\\ -6\,=\,x\)

 

So line  \(l\)  passes through the point  (-6, 15) .

 

Line  \(m\)  appears to have a slope of  \(-\frac27\)  and a y-intercept of  2 .

 

So the equation of line  \(m\)  is        \(y\,=\,-\frac27x+2\)

 

On line  \(m\) ,  when  y = 15 ....

 

\(15\,=\,-\frac27x+2\\~\\ 13\,=\,-\frac27x\\~\\ -\frac72\cdot13\,=\,x\\~\\ -\frac{91}{2}\,=\,x\)

 

So line  \(m\)  passes through the point  (\(-\frac{91}{2}\), 15)  .

 

Here's a graph to check this:   https://www.desmos.com/calculator/jbuxnl82ve

 

the difference in the x-coordinates  =  \(-6--\frac{91}{2}\,=\,-6+\frac{91}{2}\,=\,-\frac{12}{2}+\frac{91}{2}\,=\,\frac{79}{2}\)

 

the difference in the x-coordinates  =  \(\frac{79}{2}\)

hectictar  Apr 8, 2018

20 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details