Find the total surface area and the volume of the conical frustum below.
To find the volume of this conical frustum, we can use the formula for the volume of the conical frustum which is:
V = (1/3) x π x h x (r² + R² + (r x R))
Plugging in the values, we get:
V = (1/3) x π x 92 x (25² + 33² + (25 x 33))
V = 92/3 x π x (625 + 1089 + 825)
V = 92/3 x π x 2539
V = 92/3 x π x 2539
V = 244612.781589
V ≈ 244612.78
Answer: V = 244612.78 units
To find the surface area of this conical frustum, we can use the formula for the surface area of the conical frustum which is:
SA = π x [ r²+ R² + (r + R) x √((r - R)² + h²) ]
Plugging in the values, we get:
SA = π x [ 25²+ 33² + (25 + 33) x √((25 - 33)² + 92²) ]
SA = π x [ 625 + 1089 + 58 x √(64 + 8464) ]
SA = π x [ 1714 + 58 x √8528 ]
SA = π x [ 1714 + 58 x 92.3471710449 ]
SA = π x [ 1714 + 5356.1359206 ]
SA = π x [ 7070.1359206 ]
SA ≈ 22211.49
Answer: SA = 22211.49 units