+0  
 
+3
575
1
avatar+564 

On the interval $$[0,2\pi]$$, where is the function 

$$f(x)=\sqrt{2sinx-\sqrt{3}}$$ continuous?

 Sep 20, 2014

Best Answer 

 #1
avatar+118687 
+8

We are talking real numbers here so the number under the square root must be positive.

 

$$\\2sinx-\sqrt3\ge0\\\\
2sinx\ge\sqrt3\\\\
sinx\ge\frac{\sqrt3}{2}\\\\$$

 

for starters  sinx must be positive so it must be 1st and 2nd quad only.

 

$$asin(\frac{\sqrt3}{2})=\frac{\pi}{3}$$       the second quadrant equivalent is   $$\pi-\frac{\pi}{3}=\frac{2\pi}{3}$$

 

$$\frac{\pi}{3}\le x \le \frac{2\pi}{3}$$

 

I know this because sin(pi/2)=1    and I know what the sine curve looks like so I know the answer will be between these two values.      

 Sep 20, 2014
 #1
avatar+118687 
+8
Best Answer

We are talking real numbers here so the number under the square root must be positive.

 

$$\\2sinx-\sqrt3\ge0\\\\
2sinx\ge\sqrt3\\\\
sinx\ge\frac{\sqrt3}{2}\\\\$$

 

for starters  sinx must be positive so it must be 1st and 2nd quad only.

 

$$asin(\frac{\sqrt3}{2})=\frac{\pi}{3}$$       the second quadrant equivalent is   $$\pi-\frac{\pi}{3}=\frac{2\pi}{3}$$

 

$$\frac{\pi}{3}\le x \le \frac{2\pi}{3}$$

 

I know this because sin(pi/2)=1    and I know what the sine curve looks like so I know the answer will be between these two values.      

Melody Sep 20, 2014

0 Online Users