+0

# Function problem

0
155
1

The function f(n) satisfies f(1) = 1 and f(2n + 1) = f(n) + 2 for n >= 0.  Find f(15).

Jun 3, 2021

#1
+26228
+2

The function $$f(n)$$ satisfies $$f(1)=1$$ and $$f(2n+1)=f(n)+2$$ for $$n \ge 0$$.
Find $$f(15)$$.

$$\begin{array}{|lrcll|} \hline n=1:& f(2*1+1) &=& f(1) + 2 \quad | \quad f(1)=1 \\ &f(3) &=& 1+2 \\ &f(3)&=& 3 \\ \hline n=3:& f(2*3+1) &=& f(3) + 2 \quad | \quad f(3)=3 \\ &f(7) &=& 3+2 \\ &f(7)&=& 5 \\ \hline n=7:& f(2*7+1) &=& f(7) + 2 \quad | \quad f(7)=5 \\ &f(15) &=& 5+2 \\ &\mathbf{ f(15) } &=& \mathbf{7} \\ \hline \end{array}$$

Jun 3, 2021

#1
+26228
+2
The function $$f(n)$$ satisfies $$f(1)=1$$ and $$f(2n+1)=f(n)+2$$ for $$n \ge 0$$.
Find $$f(15)$$.
$$\begin{array}{|lrcll|} \hline n=1:& f(2*1+1) &=& f(1) + 2 \quad | \quad f(1)=1 \\ &f(3) &=& 1+2 \\ &f(3)&=& 3 \\ \hline n=3:& f(2*3+1) &=& f(3) + 2 \quad | \quad f(3)=3 \\ &f(7) &=& 3+2 \\ &f(7)&=& 5 \\ \hline n=7:& f(2*7+1) &=& f(7) + 2 \quad | \quad f(7)=5 \\ &f(15) &=& 5+2 \\ &\mathbf{ f(15) } &=& \mathbf{7} \\ \hline \end{array}$$