+0  
 
0
70
1
avatar+2592 

If \(f(3)=1\) and \(f(2x)=2f(x)\) for all \(x\) , find \(f^{-1}(64)\).

tertre  Mar 10, 2018
Sort: 

1+0 Answers

 #1
avatar+86528 
+1

f(3)  =  1

f(6)  = f(2 * 3) = 2f(3)  = 2 * 1  = 2

f(12)  = f(2 * 6)  = 2f(6)  = 2 * 2  = 4

f(24)  = f(2 * 12) = 2f(12) = 2 * 4 = 8

f(48) = f(2 * 24)= 2f(24) = 2 * 8   = 16

f(96) = f(2 *48) = 2f(48) = 2 * 16 = 32

f(192) = f(2 * 96) = 2f(96) = 2 * 32  = 64

 

So

 

f(192)  =  64       which implies that

 

f-1(64)  =  192

 

 

cool cool cool

CPhill  Mar 10, 2018

23 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy