+0  
 
0
125
3
avatar

Given that f(x) = 4x + k , and g(x) = x - 2 , find the possible value of m and k if  f[g(x)] = mx + 8

Guest Jan 16, 2018
 #1
avatar+87639 
+1

Given that f(x) = 4x + k , and g(x) = x - 2 , find the possible value of m and k if  f[g(x)] = mx + 8

 

I'm assuming that these represent linear equations  with m = slope and k  = y intercept

 

f (g (x) )  =   4 (x - 2)  +  k  

 

So.....

 

4(x - 2) +  k  =  mx +  8     

 

4x  -  8  + k  =  mx  +  8            let k  =  16

 

4x  + 8  =  mx  + 8         ⇒      m   =  4

 

 

So

 

m  =  4     and  k   =  16

 

 

cool cool cool

CPhill  Jan 16, 2018
 #2
avatar
0

How do you get k = 16?

Guest Jan 16, 2018
 #3
avatar+87639 
+1

If  -8  +  k  is the y intercept of one line  and  8 is the y intercept of the other....and we want the y intercepts to be the same, we have that

 

-8  +  k  =  8      add 8 to both sides

 

k   =  16

 

 

cool cool cool

CPhill  Jan 16, 2018

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.