+0  
 
+1
80
2
avatar+621 

If \(t(x) = 3-g(x)\) and \(g(x)=\sqrt{x}\), then what is \(t(g(16))\)?

mathtoo  Aug 27, 2018

Best Answer 

 #1
avatar+7336 
+3

g(x)  =  √x

                       Plug in  16  for  x .

g(16)  =  √16

 

g(16)  =  4

 

And...

 

t(x)  =  3 - g(x)

                                          Since  g(x)  =  √x  , we can substitute  √x  in for  g(x) .

t(x)  =  3 - √x

                                          Plug in  g(16)  for  x .

t(g(16))  =  3 - √[ g(16) ]

                                          Since  g(16)  =  4 , we can substitute  4  in for  g(16) .               

t(g(16))  =  3 - √[ 4 ]

 

t(g(16))  =  3 - 2

 

t(g(16))  =  1

 

Also...

 

t(g(16))  =  3 - g( g(16) )  =  3 - g( 4 )  =  3 - 2  =  1

hectictar  Aug 27, 2018
edited by hectictar  Aug 27, 2018
 #1
avatar+7336 
+3
Best Answer

g(x)  =  √x

                       Plug in  16  for  x .

g(16)  =  √16

 

g(16)  =  4

 

And...

 

t(x)  =  3 - g(x)

                                          Since  g(x)  =  √x  , we can substitute  √x  in for  g(x) .

t(x)  =  3 - √x

                                          Plug in  g(16)  for  x .

t(g(16))  =  3 - √[ g(16) ]

                                          Since  g(16)  =  4 , we can substitute  4  in for  g(16) .               

t(g(16))  =  3 - √[ 4 ]

 

t(g(16))  =  3 - 2

 

t(g(16))  =  1

 

Also...

 

t(g(16))  =  3 - g( g(16) )  =  3 - g( 4 )  =  3 - 2  =  1

hectictar  Aug 27, 2018
edited by hectictar  Aug 27, 2018
 #2
avatar+621 
+4

Thank you, hectictar! Nice solution!

mathtoo  Aug 27, 2018

31 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.