In the diagram, \(AOB\) is a quarter circle of radius 10 and \(PQRO\)is a rectangle of perimeter \(26\). What is the perimeter of the shaded region?
Here's my best effort ....
If the perimeter of the rectangle is 26....then
2(W + L ) = 26
W + L = 13
Then L = 13 - W
Call point Q = ( W , L ) = (W , 13 - W)
So.....using the equation of a circle with a center O located at (0,0) and a radius of 10, we have
W^2 + (13 - W)^2 = 100
W^2 + W^2 - 26W + 169 = 100
2W^2 - 26W + 69 = 0
Solving this for W we get that W = [ 13 + √31] / 2 = OP
And L = [ 13 - √31 ] / 2 = PQ
So PR = (1/2) √ [ ( 13 + √31)^2 + (13 - √13)^2 ] = (1/2) √[ 382 + 26√31 - 26√13 ]
So.... the perimeter =
arc BQA + AP + PR + BR =
5pi + (10 - OP) + PR + (10 - PQ) =
5pi + (10 - [ 13 + √31] / 2 ) + (1/2) √[ 382 + 26√31 - 26√13 ] + (10 - [ 13 - √31 ] / 2 ) ≈
33.1125 units
CPhill: I will give it a go. Please check my reasoning! Thanks.
The diagonal OQ of the rectangle = radius of the circle = 10
Cos(45) =OP / 10 =~ 7.07 =10/sqrt(2)
OR = 26 / 2 - 7.07=~ 5.93 =13 - 5sqrt(2)
10 - OR = BR =~4.07=5sqrt(2) - 3
AP = 10 - 7.07 =~2.93=10 - 5sqrt(2)
Arc AQB =[10 x 2 x Pi] / 4 =~15.71 =5pi
So, the perimeter of the shaded area =10 + [5sqrt(2) - 3] + [10 - 5sqrt(2)] + 5pi =17 + 5pi