+0  
 
0
91
1
avatar

Hi, I start doing the task, but then I dont know what to do next. Here is:

 

1a+a2+a3=62

a1*a2*a3=1000

 

a1+a1*q+a1*q^2=62

a1*a1*q*a1*q^2=1000

 

a1+a1*q+a1*q^2=62

a1^3 * q^3=1000

Guest Aug 23, 2017

Best Answer 

 #1
avatar+18715 
+2

Geometric series

Hi, I start doing the task, but then I dont know what to do next. Here is:

a1+a2+a3=62

a1*a2*a3=1000

 

\(\begin{array}{|rcll|} \hline a_1*a_2*a_3 &=& 1000 & | \quad a_1 = a \qquad a_2 = a*q \qquad a_3 = a*q^2 \\ a*(a*q)*(a*q^2) &=& 1000 \\ a^3*q^3 &=& 1000 \\ a^3*q^3 &=& 10^3 & | \quad \sqrt[3]{} \\ a*q &=& 10 \\ \mathbf{ a} &\mathbf{ =}&\mathbf{ \frac{10}{q} }\\\\ a_1+a_2+a_3 &=& 62 & | \quad a_1 = a \qquad a_2 = a*q \qquad a_3 = a*q^2 \\ a +a*q + a*q^2 &=& 62 \\ a *(1 + q + q^2) &=& 62 & | \quad \mathbf{a= \frac{10}{q}} \\ \frac{10}{q} *(1 + q + q^2) &=& 62 \\ \frac{1}{q} *(1 + q + q^2) &=& 6.2 \\ \frac{1}{q} +1+q &=& 6.2 \\ \frac{1+q^2}{q} &=& 5.2 \\ 1+q^2 &=& 5.2*q \\ q^2-5.2*q +1 &=& 0 \\ (q-5)*(q-0.2) &=& 0 \\\\ \mathbf{q = 5} &\mathbf{ \text{ or } }& \mathbf{q = 0.2 }\\\\ a =\frac{10}{5} && a =\frac{10}{0.2} \\ \mathbf{a = 2} &\mathbf{ \text{ or } }& \mathbf{a = 50} \\ \hline \end{array} \)

 

Geometric series:

 

1.

\(a=2 \quad q = 5 : \\ 2+2*5+2*5^2 = 62\ \checkmark \\ 2*(2*5)*(2*5^2) = 1000\ \checkmark \)

 

2

.\(a=50 \quad q = 0.2 : \\ 50 + 50*0.2 + 50*0.2^2 = 62 \ \checkmark \\ 50*(50*0.2)*(50*0.2^2) = 1000\ \checkmark \)

 

 

laugh

heureka  Aug 23, 2017
Sort: 

1+0 Answers

 #1
avatar+18715 
+2
Best Answer

Geometric series

Hi, I start doing the task, but then I dont know what to do next. Here is:

a1+a2+a3=62

a1*a2*a3=1000

 

\(\begin{array}{|rcll|} \hline a_1*a_2*a_3 &=& 1000 & | \quad a_1 = a \qquad a_2 = a*q \qquad a_3 = a*q^2 \\ a*(a*q)*(a*q^2) &=& 1000 \\ a^3*q^3 &=& 1000 \\ a^3*q^3 &=& 10^3 & | \quad \sqrt[3]{} \\ a*q &=& 10 \\ \mathbf{ a} &\mathbf{ =}&\mathbf{ \frac{10}{q} }\\\\ a_1+a_2+a_3 &=& 62 & | \quad a_1 = a \qquad a_2 = a*q \qquad a_3 = a*q^2 \\ a +a*q + a*q^2 &=& 62 \\ a *(1 + q + q^2) &=& 62 & | \quad \mathbf{a= \frac{10}{q}} \\ \frac{10}{q} *(1 + q + q^2) &=& 62 \\ \frac{1}{q} *(1 + q + q^2) &=& 6.2 \\ \frac{1}{q} +1+q &=& 6.2 \\ \frac{1+q^2}{q} &=& 5.2 \\ 1+q^2 &=& 5.2*q \\ q^2-5.2*q +1 &=& 0 \\ (q-5)*(q-0.2) &=& 0 \\\\ \mathbf{q = 5} &\mathbf{ \text{ or } }& \mathbf{q = 0.2 }\\\\ a =\frac{10}{5} && a =\frac{10}{0.2} \\ \mathbf{a = 2} &\mathbf{ \text{ or } }& \mathbf{a = 50} \\ \hline \end{array} \)

 

Geometric series:

 

1.

\(a=2 \quad q = 5 : \\ 2+2*5+2*5^2 = 62\ \checkmark \\ 2*(2*5)*(2*5^2) = 1000\ \checkmark \)

 

2

.\(a=50 \quad q = 0.2 : \\ 50 + 50*0.2 + 50*0.2^2 = 62 \ \checkmark \\ 50*(50*0.2)*(50*0.2^2) = 1000\ \checkmark \)

 

 

laugh

heureka  Aug 23, 2017

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details