+0  
 
0
261
1
avatar

Hi, I start doing the task, but then I dont know what to do next. Here is:

 

1a+a2+a3=62

a1*a2*a3=1000

 

a1+a1*q+a1*q^2=62

a1*a1*q*a1*q^2=1000

 

a1+a1*q+a1*q^2=62

a1^3 * q^3=1000

Guest Aug 23, 2017

Best Answer 

 #1
avatar+19835 
+2

Geometric series

Hi, I start doing the task, but then I dont know what to do next. Here is:

a1+a2+a3=62

a1*a2*a3=1000

 

\(\begin{array}{|rcll|} \hline a_1*a_2*a_3 &=& 1000 & | \quad a_1 = a \qquad a_2 = a*q \qquad a_3 = a*q^2 \\ a*(a*q)*(a*q^2) &=& 1000 \\ a^3*q^3 &=& 1000 \\ a^3*q^3 &=& 10^3 & | \quad \sqrt[3]{} \\ a*q &=& 10 \\ \mathbf{ a} &\mathbf{ =}&\mathbf{ \frac{10}{q} }\\\\ a_1+a_2+a_3 &=& 62 & | \quad a_1 = a \qquad a_2 = a*q \qquad a_3 = a*q^2 \\ a +a*q + a*q^2 &=& 62 \\ a *(1 + q + q^2) &=& 62 & | \quad \mathbf{a= \frac{10}{q}} \\ \frac{10}{q} *(1 + q + q^2) &=& 62 \\ \frac{1}{q} *(1 + q + q^2) &=& 6.2 \\ \frac{1}{q} +1+q &=& 6.2 \\ \frac{1+q^2}{q} &=& 5.2 \\ 1+q^2 &=& 5.2*q \\ q^2-5.2*q +1 &=& 0 \\ (q-5)*(q-0.2) &=& 0 \\\\ \mathbf{q = 5} &\mathbf{ \text{ or } }& \mathbf{q = 0.2 }\\\\ a =\frac{10}{5} && a =\frac{10}{0.2} \\ \mathbf{a = 2} &\mathbf{ \text{ or } }& \mathbf{a = 50} \\ \hline \end{array} \)

 

Geometric series:

 

1.

\(a=2 \quad q = 5 : \\ 2+2*5+2*5^2 = 62\ \checkmark \\ 2*(2*5)*(2*5^2) = 1000\ \checkmark \)

 

2

.\(a=50 \quad q = 0.2 : \\ 50 + 50*0.2 + 50*0.2^2 = 62 \ \checkmark \\ 50*(50*0.2)*(50*0.2^2) = 1000\ \checkmark \)

 

 

laugh

heureka  Aug 23, 2017
 #1
avatar+19835 
+2
Best Answer

Geometric series

Hi, I start doing the task, but then I dont know what to do next. Here is:

a1+a2+a3=62

a1*a2*a3=1000

 

\(\begin{array}{|rcll|} \hline a_1*a_2*a_3 &=& 1000 & | \quad a_1 = a \qquad a_2 = a*q \qquad a_3 = a*q^2 \\ a*(a*q)*(a*q^2) &=& 1000 \\ a^3*q^3 &=& 1000 \\ a^3*q^3 &=& 10^3 & | \quad \sqrt[3]{} \\ a*q &=& 10 \\ \mathbf{ a} &\mathbf{ =}&\mathbf{ \frac{10}{q} }\\\\ a_1+a_2+a_3 &=& 62 & | \quad a_1 = a \qquad a_2 = a*q \qquad a_3 = a*q^2 \\ a +a*q + a*q^2 &=& 62 \\ a *(1 + q + q^2) &=& 62 & | \quad \mathbf{a= \frac{10}{q}} \\ \frac{10}{q} *(1 + q + q^2) &=& 62 \\ \frac{1}{q} *(1 + q + q^2) &=& 6.2 \\ \frac{1}{q} +1+q &=& 6.2 \\ \frac{1+q^2}{q} &=& 5.2 \\ 1+q^2 &=& 5.2*q \\ q^2-5.2*q +1 &=& 0 \\ (q-5)*(q-0.2) &=& 0 \\\\ \mathbf{q = 5} &\mathbf{ \text{ or } }& \mathbf{q = 0.2 }\\\\ a =\frac{10}{5} && a =\frac{10}{0.2} \\ \mathbf{a = 2} &\mathbf{ \text{ or } }& \mathbf{a = 50} \\ \hline \end{array} \)

 

Geometric series:

 

1.

\(a=2 \quad q = 5 : \\ 2+2*5+2*5^2 = 62\ \checkmark \\ 2*(2*5)*(2*5^2) = 1000\ \checkmark \)

 

2

.\(a=50 \quad q = 0.2 : \\ 50 + 50*0.2 + 50*0.2^2 = 62 \ \checkmark \\ 50*(50*0.2)*(50*0.2^2) = 1000\ \checkmark \)

 

 

laugh

heureka  Aug 23, 2017

15 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.