We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
353
2
avatar+70 

The curve y=x3+ ax2+bx+3 has a point of inflexion at (2,-1). Find the values of a and b 

 

Thank you so much

 Dec 4, 2017
 #1
avatar+7354 
+1

y  =  x3 + ax2 + bx + 3

 

We know that when  x = 2  , y''  =  0 .

 

y'  =  3x2 + 2ax + b

y''  =  6x + 2a                So....

0  =  6(2) + 2a

a  =  -6

 

Since the graph passes through  (2, -1) , we know...

 

-1  =  23 + (-6)(2)2 + b(2) + 3

-1  =  8 - 24 + 2b + 3

12  =  2b

b  =  6

 

Here's a graph:  https://www.desmos.com/calculator/grhajhd2m3     smiley

 Dec 4, 2017
edited by hectictar  Dec 4, 2017
 #2
avatar+99580 
+2

We need to find the second derivative here

 

y'  =  3x^2  +  2ax

 

y" =  6x +  2a       and an inflection point will occur when this = 0

 

Set this to  0

 

6x + 2a =  0

 

3x + a  = 0

 

3x  =  -a    ⇒    a  = -3x    and when x = 2 we have that  -3(2)  = -6 =  a

 

So....putting this into the original function to find b, we have that

 

y  = x^3  + (-6)x^2 + bx  +3

 

And  we have that at  x = 2, y  = -1....so.....

 

-1  =  (2)^3 - 6(2)^2 + b(2) + 3

 

-1 = 8 - 24 + 3 + 2b

 

-1  = -13 + 2b

 

12  = 2b   ⇒  b =  6

 

So the function  is

 

y  = x^3 -6x^2 + 6x + 3

 

Here's the graph with the inflection point :

 

https://www.desmos.com/calculator/6ls40gwylq

 

 

 

cool cool cool

 Dec 4, 2017

22 Online Users

avatar
avatar
avatar