+0

-1
797
1
+122

The coordinates of the vertices of trapezoid EFGH are E(−8, 8) , F(−4, 12) , G(−4, 0) , and H(−8, 4) . The coordinates of the vertices of trapezoid E′F′G′H′ are E′(−8, 6) , F′(−5, 9) , G′(−5, 0) , andH′(−8, 3) .

Which statement correctly describes the relationship between trapezoid EFGH and trapezoid E′F′G′H′ ?

Trapezoid EFGH is not congruent to trapezoid E′F′G′H′ because there is no sequence of rigid motions that maps trapezoid EFGH to trapezoid E′F′G′H′ .

Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH totrapezoid E′F′G′H′ by reflecting it across the x-axis and then translating it up 14 units, which is a sequence of rigid motions.

Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH totrapezoid E′F′G′H′ by translating it down 2 units and then reflecting it over the y-axis, which is a sequence of rigid motions.

Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH totrapezoid E′F′G′H′ by dilating it by a factor of 34 and then translating it 2 units left, which is a sequence of rigid motions.

Dec 12, 2017

#1
+98197
+2

Trapezoid EFGH is not congruent to trapezoid E′F′G′H′ because there is no sequence of rigid motions that maps trapezoid EFGH to trapezoid E′F′G′H′ .

Dec 12, 2017