+0  
 
0
43
3
avatar

The vertex of the right isosceles triangle is the center of the square. What is the area of the overlapping region?

 May 27, 2021
 #1
avatar
0

The area of the overlapping region is 20.

 May 27, 2021
 #2
avatar
0

Could you explain your reasoning a bit to help me understand?

Guest May 27, 2021
 #3
avatar+25993 
+1

Geometry help please?


\(\begin{array}{|rcll|} \hline A &=& \dfrac{5x}{2} + 5*\left(\dfrac{(5-x)+5}{2}\right) \\ A &=& \dfrac{5x}{2} + 5*\left(\dfrac{10-x}{2}\right) \\ A &=& \dfrac{5}{2}\left( x+10-x \right) \\ A &=& \dfrac{5}{2}*10 \\ \mathbf{A} &=& \mathbf{25} \\ \hline \end{array}\)

 

laugh

 May 27, 2021

14 Online Users

avatar
avatar