+0  
 
0
105
1
avatar

We have a right triangle \(\triangle ABC\) where the legs \(AB\) and \(BC\) have lengths \(6\) and \(3\sqrt{3}\) respectively. Medians \(AM\) and \(CN\) meet at point \(P.\) What is the length of \(CP\)?

Guest Aug 27, 2018
 #1
avatar+7025 
+1

Put it on a coordinate plane.

Now A(0,6), B(0,0), C(\(3\sqrt3\),0)

Slope of AM = \(\dfrac{0-6}{\dfrac{3\sqrt3}{2}-0}\)=\(-\dfrac{4\sqrt3}{3}\)

Equation of AM is \(y = -\dfrac{4\sqrt3x}{3}+6\)

Slope of CN = \(\dfrac{0-3}{3\sqrt3-0}\)=\(-\dfrac{\sqrt3}{3}\)

Equation of CN is \(y=-\dfrac{\sqrt3x}{3}+3\)

Solving for the intersection point(P):

P = (\(\sqrt3\),2)

Recalling that C = (\(3\sqrt3\),0).

Length of CP = \(\sqrt{(\sqrt3-0)^2+(3\sqrt3-2)^2}\) = \(\sqrt{34-12\sqrt3}\).

And this is the simplest it can get.

MaxWong  Aug 27, 2018

32 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.