+0  
 
-3
3946
3
avatar

1. In the diagram below, line AB is parallel to line CD, EF = FG, <BEF = 100+x and <AEG=x. Find the value of x.

 

2. In the diagram below, WY = 9, XZ=7, [AWX]=30, and [AYZ] = 20. Find [AXY].


 

 Nov 30, 2016
 #1
avatar+130511 
0

1)  < BEF   =  < GFE  and  < AEG   = < FGE  [ a transversal cutting two parallel lines makes alternate interior angles equal]

 

Since EF  = FG  then  < FGE  = < GEF      [ when two sides of a triangle are equal, the angles opposite those sides are also equal]

 

But  < AEG  = < FGE....so   .....  <GEF  = < AEG   as well

 

And we have that

 

< GFE + < FGE + < GEF   = 180     and by substitution

 

[100 + x ] +  x + x  = 180

 

100 + 3x  = 180     subtract 100 from each side

 

3x  = 80

 

x = 80/3  =  about 26.66°

 

 

 

cool cool cool

 Dec 1, 2016
 #2
avatar+130511 
+1

2)   This problem is impossible......If  <AYZ  = 20  then < AYW   = 160  because they are supplementary angles

 

But   < AWX  = 30   = < AWY.......which implies that  in  Δ AWY.... angles  AWY  and AYW would sum to  30 + 160   = 190°.......but  this sum is greater than 180° which is not possible

 

 

cool cool cool

 Dec 1, 2016
 #3
avatar
+1

The brackets [ and ] mean area. So [XYZ] would mean the area of triangle XYZ

 Mar 18, 2017

0 Online Users