+0  
 
0
26
2
avatar+101 

Let O be the origin. Points P and Q lie in the first quadrant. The slope of line segment OP is 2 and the slope of line segment OQ is 3 If OP=OQ then compute the slope of line segment PQ

Note: The point (x, y) lies in the first quadrant if both x and y are positive.

 
 Jan 26, 2024
 #1
avatar+129895 
+1

Construct a circle  with  a center at the origin and a radius of 1

 

We have the equation 

x^2  +  y^2   =  1       (1)

 

Let P,Q lie on this  circle

 

OP has a slope of 2

So    y/x  =  2

y  = 2x

Sub this into (1)  for y

x^2 + (2x)^2   =1

5x^2  = 1

x^2  = 1/5

x =1/sqrt (5)

y = 2/sqrt (5)

So....P =  (1/sqrt (5)  / 2sqrt (5) )

 

OQ  has a slope of 3

So

y/x =  3

y = 3x

Sub this into (1) for y

x^2 + (3x)^2  =1

10x^2 = 1

x^2 = 1/10

x = 1/ sqrt (10)

y = 3/sqrt (10)

So....Q=  (1 / sqrt (10) , 3sqrt (10) )

 

Slope  of PQ  = 

 

[ 3/sqrt (10) - 2/sqrt (5) ]   /  [ 1/sqrt (10)   - 1/sqrt (5) ]   =

 

[ 3/sqrt (10)  - 2sqrt (2) / sqrt (10 ] /  [ 1/sqrt (10) - sqrt (2)/sqrt (10 ) ]  =

 

[ 3 - 2sqrt (2)]         [1 + sqrt (2)]          

____________ *    ____________    =

[ 1  -  sqrt (2) ]         [ 1 + sqrt (2)]

 

 

3 - 2sqrt (2) + 3sqrt (2) - 4

______________________   =

     1  - 2

 

 

-1 + sqrt (2)

__________  = 

    1  -  2

 

 

1  -  sqrt (2)  

 

cool cool cool

 Jan 27, 2024
edited by CPhill  Dec 7, 2024

0 Online Users