Geometry problem
Let RA=25ACLet CR=35ACLet AP=14ABLet AQ=34AB
2[ABC]=AB∗AC∗sin(A)
2[ACQ]=AC∗34AB∗sin(A)2[ACQ]=34AB∗AC∗sin(A)2[ACQ]=34∗2[ABC]2[ACQ]=32[ABC][BQC]=[ABC]−[ACQ]|∗22[BQC]=2[ABC]−2[ACQ]2[BQC]=2[ABC]−2[ACQ]|2[ACQ]=32[ABC]2[BQC]=2[ABC]−32[ABC]|:2[BQC]=[ABC]−34[ABC][BQC]=14[ABC]
2[ARQ]=25AC∗34AB∗sin(A)2[ARQ]=310AB∗AC∗sin(A)2[ARQ]=310∗2[ABC]2[ARQ]=35[ABC][CRQ]=[ACQ]−[ARQ]|∗22[CRQ]=2[ACQ]−2[ARQ]2[CRQ]=2[ACQ]−2[ARQ]2[CRQ]=32[ABC]−35[ABC]|:2[CRQ]=34[ABC]−310[ABC][CRQ]=(34−310)[ABC][CRQ]=(30−1240)[ABC][CRQ]=(1840)[ABC][CRQ]=920[ABC]
[BQC][CRQ]=14[ABC]920[ABC][BQC][CRQ]=14920[BQC][CRQ]=14∗209[BQC][CRQ]=59