We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+2
148
1
avatar+814 

In a circle with center \(O\),  \(AD \)is a diameter,  \(ABC\)is a chord, \(BO = 5\), and \(\angle ABO = \text{arc } CD = 60^\circ\). Find the length of \(BC\)

 

 

Also, should I use the power of point theorem? 

 Nov 24, 2018
 #1
avatar+101424 
+1

Angle CAD is an inscribed angle intersecting arc CD.....so..its measure is 1/2 of the arc = 30°

 

And since angle ABO = 60°, then angle BOA  =  180 - 30 - 60   = 90°

 

So....we have 30 - 60 - 90 right triangle

 

And the side opposite the right angle = AB  =  2BO   = 10

 

And the side opposite the  the 60° angle ABO   =  AO =  5√3   = √75 =   the radius of the circle

 

Draw OB through to intersect the circle at M.....so  OM is a radius = 5√3 = √75

 

So BM = OM - BO =   [ 5√3 - 5]   = [ √75 - 5 ]

 

And draw BO through to intersect the circle at N

 

So.....BN =  [ 5√3 + 5] = [ √5 + 5 ]

 

An

 

So.....we can use the intersecting chord theorem to find BC

 

AB * BC   =  BM * BN

 

10 * BC =  [ √75 - 5 ]  * [ √75 + 5 ]

 

10 * BC = 75 - 25

 

10 * BC  = 50     divide both sides by 10

 

BC =  50 / 10    =   5

 

 

cool cool cool

 Nov 24, 2018

16 Online Users

avatar
avatar
avatar
avatar