We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
293
1
avatar+92 

Triangle ABC has side AB extended in the direction of B to E. m∠CAB = 15x - 92x - 25) and m∠CBE = 125°. Find all possible values of x.

 Sep 9, 2018
edited by FreezingTNT  Sep 9, 2018
 #1
avatar+8096 
+1

 

Since  ∠ABC  and  ∠CBE  form a straight line...

 

m∠ABC   =   180° - m∠CBE   =   180° - 125°   =   55°

 

The sum of the angles in a triangle is always  180° , and each angle is greater than  0° , so the sum of any two angles has to be less than 180° . So...

 

55° + (15x - 92x - 25)°   <   180°

 

55 + 15x - 92x - 25   <   180

 

30 - 77x   <   180

 

-77x   <   150

 

x   >   - \(\frac{150}{77}\)

 

And...

 

0°  <  (15x - 92x - 25)°

 

0   <   -77x - 25

 

25   <   -77x

 

-\(\frac{25}{77}\)  >  x

 

- \(\frac{25}{77}\)   >   x   >   - \(\frac{150}{77}\)

 

All possible values of  x  are in the interval  (-\(\frac{150}{77}\), -\(\frac{25}{77}\))

 Sep 10, 2018

14 Online Users

avatar
avatar
avatar