+0  
 
+1
12
3
avatar+0 

A rectangle contains a strip of width $1,$ as shown below.  Find the area of the strip.

 

 Feb 11, 2024
 #1
avatar
0

Hint: make the small length of the shaded area, ( the smaller side of the parallelogram x). Then you can use simular triangles.

 Feb 11, 2024
 #2
avatar+15001 
+1

Let the distance on the base line, from the right edge to the strip, be x.

Then the following applies:

 

\( A_{rectangle}=1\cdot\sqrt{8^2+x^2}+8x=10\cdot 8\\ \sqrt{8^2+x^2}=80-8x\\ 8^2+x^2=6400-1280x+64x^2\\ 63x^2-1280x+6336=0 \)

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}=\frac{640-8\sqrt{163}}{63}\\ x=8.5375\\ A_{strip}=1\cdot \sqrt{8.5375^2+8^2}\\ \color{blue}A_{strip}=11.700\)

laugh!

 Feb 12, 2024
 #3
avatar+129850 
+1

Let AE = "a"

Note that angle AGE = 90   because GE is perpendicular to AF

Let angle  GAE =  theta

Because AF is parallel to EC , then angle GAE  =  CED

sin ( GAE)  =  1/a

tan (CED)  = 8 / (10 - a)

sin (CED)  =   8 / sqrt [ 8^2 + (10-a)^2]  =  8 /sqrt [ a^2 -20a + 164]

 

sin (GAE)  = sin (CED)

 

1/a = 8 / sqrt [a^2 -20a + 164 ]       square both sides and  cross-multiply

 

a^2 -20a + 164  =  64a^2

 

63a^2 + 20a - 164 = 0

 

a ≈ 1.4625

 

The strip is a parallelogram with a height of 8 and a width of a = 1.4625

 

Area =  8 * 1.4625 =  11.7 

 

Note something interesting.......the numerical value of the area ≈ the numerical value of the length of  AF, EC

 

cool cool cool

 Jun 3, 2024
edited by CPhill  Jun 3, 2024

3 Online Users

avatar
avatar