A rectangle contains a strip of width $1,$ as shown below. Find the area of the strip.
Hint: make the small length of the shaded area, ( the smaller side of the parallelogram x). Then you can use simular triangles.
Let the distance on the base line, from the right edge to the strip, be x.
Then the following applies:
\( A_{rectangle}=1\cdot\sqrt{8^2+x^2}+8x=10\cdot 8\\ \sqrt{8^2+x^2}=80-8x\\ 8^2+x^2=6400-1280x+64x^2\\ 63x^2-1280x+6336=0 \)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}=\frac{640-8\sqrt{163}}{63}\\ x=8.5375\\ A_{strip}=1\cdot \sqrt{8.5375^2+8^2}\\ \color{blue}A_{strip}=11.700\)
!
Let AE = "a"
Note that angle AGE = 90 because GE is perpendicular to AF
Let angle GAE = theta
Because AF is parallel to EC , then angle GAE = CED
sin ( GAE) = 1/a
tan (CED) = 8 / (10 - a)
sin (CED) = 8 / sqrt [ 8^2 + (10-a)^2] = 8 /sqrt [ a^2 -20a + 164]
sin (GAE) = sin (CED)
1/a = 8 / sqrt [a^2 -20a + 164 ] square both sides and cross-multiply
a^2 -20a + 164 = 64a^2
63a^2 + 20a - 164 = 0
a ≈ 1.4625
The strip is a parallelogram with a height of 8 and a width of a = 1.4625
Area = 8 * 1.4625 = 11.7
Note something interesting.......the numerical value of the area ≈ the numerical value of the length of AF, EC