We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
94
2
avatar

Consider square ABCD and a point P on its diagonal AC such that AP:PC=1:3, If AP=10, what is the area of triangele BPC

 Oct 5, 2019
 #1
avatar
+2

Since the diagonal AC of the square ABCD splits the square into 2 EQUAL isosceles right triangles, each triangle having:90, 45, 45-degree angles and a hypotenuse(the diagonal) of:10 + 30 =40, then the area  of each of the 2 triangles =1/2 sin(45) x 40 x sqrt(40^2 - S^2=sqrt(800) = 400 - square units - the area of one of the two triangles.


The area is proportional to the ratio of the diagonal(1:3), then the area of triangle BPC =400 / 4 x 3 =300 square units.

 Oct 5, 2019
 #2
avatar+8810 
+2

 

See:  https://www.desmos.com/calculator/sln5zuurfx

 

We know that

 

AP / PC  =  1 / 3

                              We are also given that  AP = 10   so we can substitute  10  in for  AP

10 / PC  =  1 / 3

                              If it isn't already clear that  PC  must be  30 , we can invert both sides

PC / 10  =  3 / 1

                              and then multiply both sides of the equation by  10

PC  =  3 / 1 * 10

 

PC  =  30

 

And now we can find the length of  AC

 

AC   =   AP + PC   =   10 + 30   =   40

 

The diagonals of a square are the same length and bisect each other so...

 

h   =   AC / 2   =   40 / 2   =   20       where  h  is the height of triangle BPC

 

Area of triangle BPC   =   ( 1/2 )( PC )( h )   =   ( 1/2 )( 30 )( 20 )   sq units   =   300   sq units

 Oct 5, 2019

32 Online Users

avatar
avatar
avatar
avatar