+0  
 
0
63
1
avatar

1. Point \(B\) is the image of point \(A\) under a dilation with center \(O\) and scale factor \(7\). If \(AB=44\), then what is \(OA\)?

 

2. Two lines \(p\) and \(q\) intersect at \(X\) at an angle of \(34^\circ\). Let \(A\) be a point inside the \(34^\circ\) angle formed by \(p\) and \(q\). Let \(B\) be the reflection of \(A\) through line \(p\) and let \(C\) be the reflection of \(A\) through line \(q.\) Find \(\angle BAC,\) in degrees.

 

Thank you!

 Apr 28, 2020
 #1
avatar
0

Really brutha week 19 problem 1

 

22/3

 

OB=7OA

and

OA+AB=7OA

so

6OA=AB

so

OA=AB/6

=44/6

=22/3

 

problem 6

 

since B is reflection of A, XA=XB and P is midpoint of AB so APX=90 degrees

We can do this with the other angle, and it sort of forms a quadrilateral, where we have the two 90 degree angles plus the 34 degrees. therefore BAC=360-90-90-34=146

 Apr 29, 2020

7 Online Users

avatar