+0  
 
0
79
0
avatar+190 

  1. Complete the proof of the Pythagorean theorem.

Given: ΔABC is a right triangle, with a right angle at ∠C.

Prove: a^2 + b^2 = c^2

 

Statement:  ~  Reason:

1. ΔABC is a right triangle, with a right angle at ∠C.  ~  Given

2. Draw an altitude from point C to (line segment) AB  ~  From a point not on a line, exactly one perpendicular can be draw through the point to the line.

3. ∠CDB and ∠CDA are right angles  ~  Definition of altitude

4. ∠BCA  ≅ ∠BDC  ~  All right angles are congruent

5. ∠B  ≅ ∠B  ~  Reflexive Property

6. ΔCBA ~ ΔDBC  ~  AA Similarity Postulate

7. a/x = c/a  ~  Polygon Similarity Postulate

8. a^2 = cx  ~  Cross Multiply and Simplify

9. ∠CDA  ≅ ∠BCA  ~  All Right Angles are Congruent

10. ∠A  ≅ ∠A  ~  Reflexive Property

11. ΔCBA ~ ΔDBA  ~  AA Similarity Postulate

12. b/y = c/b =  ~  Polygon Similarity Postulate

13. b^2 = cy  ~  Cross Multiply and Simplify

14. a^2 + b^2 = cx +cy  ~  Addition Property of Equality

15. (CB)^2 + (CA)^2 = (AB)(DB + BA)  ~  Distributive Property

16. x + y = c  ~  Segment Addition Postulate

17. a^2 + b^2 = c^2  ~  Substitution Property

 

***Everything in Bold is my answers. Please check them and help me because I dont think I did very well but Im horriable with two column proofs so PLEASE HELP ME!!!***

 

Thank You!!!!!!!!

KennedyPape  Jan 23, 2018
Sort: 

0+0 Answers


5 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy