+0  
 
0
3337
4
avatar+188 

In circle O, PA and PB are tangents. (The figure is not drawn to scale)

A) Prove that Triangle APO is congruent to Triangle BPO

B) Find m∠BOD for m∠AOP = 64. Explain your reasoning. 

 Apr 7, 2016

Best Answer 

 #1
avatar+118687 
+10

<OAP=<OBP=90 degrees              A radius and the tangent it touches are at right angles to one another.

OA=OB                                           Equal radii

OP                                                  common side

therefore

\(\triangle AOP \equiv \triangle BOP \qquad \mbox{Right angle Hypotenuse and one other side test.}\)

 

 

 

b)

If <AOP=64,      <BOP=64            corresponding angles in congruent triangles

<BOP+<BOD = 180                     adjacent supplementary angles

    64  +<BOD = 180

            <BOD =  116 degrees

 Apr 7, 2016
 #1
avatar+118687 
+10
Best Answer

<OAP=<OBP=90 degrees              A radius and the tangent it touches are at right angles to one another.

OA=OB                                           Equal radii

OP                                                  common side

therefore

\(\triangle AOP \equiv \triangle BOP \qquad \mbox{Right angle Hypotenuse and one other side test.}\)

 

 

 

b)

If <AOP=64,      <BOP=64            corresponding angles in congruent triangles

<BOP+<BOD = 180                     adjacent supplementary angles

    64  +<BOD = 180

            <BOD =  116 degrees

Melody Apr 7, 2016
 #2
avatar+188 
0

TNAK YOU SO MUCH MELODY!!! ^_^

Carpe♥Diem  Apr 7, 2016
 #3
avatar+188 
0

THANK* lol

Carpe♥Diem  Apr 7, 2016
 #4
avatar+2 
0

Was this answer correct? Also, is this the final exam for Geometry?

 Aug 28, 2016

0 Online Users