In triangle $ABC$, let the perpendicular bisector of $BC$ intersect $BC$ and $AC$ at $D$ and $E$, respectively. If $BC = 20$ and $\angle C = 15^\circ$, then find the length of $BE$.
A E
B D C 15
10 10
EC / sin 90 = DC / sin75
EC = 10/sin75
BD = DC
ED = ED
So....by LL, right triangle BED congruent to right triangle CED
So BE = 10/sin75 ≈ 10.35
I just want to add on that we can represent the answer 10sin(75)=10tan(15)=10tan(302).
Now we can use the trigonometric half-angle identity tan(α2)=sin(α)cos(α)+1.
We can input our normal values: 10tan(302)=10(tan(302))=10(sin(30)cos(30)+1)=10(12√32+1)=10(1√3+2)=10(2−√3)=20−10√3.
Therefore BE=√(20−10√3)2+102=√400+300−400√3+100=√800−400√3=√400(2−√3)=20√2−√3