Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
19
2
avatar+1855 

In triangle $ABC$, let the perpendicular bisector of $BC$ intersect $BC$ and $AC$ at $D$ and $E$, respectively. If $BC = 20$ and $\angle C = 15^\circ$, then find the length of $BE$.

 Jul 21, 2024
 #1
avatar+130466 
+1

             A    E

 

 

B                 D                  C  15

      10                  10   

 

EC / sin 90 = DC / sin75

EC = 10/sin75  

 

BD = DC

ED = ED

So....by LL,  right triangle BED  congruent to right triangle CED

 

So BE  = 10/sin75 ≈ 10.35

 

cool cool cool

 Jul 21, 2024
 #2
avatar+16 
+1

I just want to add on that we can represent the answer 10sin(75)=10tan(15)=10tan(302).
Now we can use the trigonometric half-angle identity tan(α2)=sin(α)cos(α)+1.
We can input our normal values: 10tan(302)=10(tan(302))=10(sin(30)cos(30)+1)=10(1232+1)=10(13+2)=10(23)=20103.
Therefore BE=(20103)2+102=400+3004003+100=8004003=400(23)=2023

 Jul 21, 2024

3 Online Users