In triangle $PQR,$ $M$ is the midpoint of $\overline{PQ}.$ Let $X$ be the point on $\overline{QR}$ such that $\overline{PX}$ bisects $\angle QPR,$ and let the perpendicular bisector of $\overline{PQ}$ intersect $\overline{PX}$ at $Y.$ If PQ = 36, PM = 22, and MY = 8, then find the area of triangle PMY.
https://web2.0calc.com/questions/in-triangle-pqr-m-is-the-midpoint-of-pq-let-x-be_1