1.
P
9 17
Y
Q X R
10
Since PX is a bisector let QX = 10 - m and RX = m
So
RX / PR = QX / PQ
m / 17 = (10 - m) / 9
9m = 17(10 - m)
9m = 170 - 17m
26m = 170
m = 170 / 26 = 85/13 =XR
Law of Cosines
PQ^2 = QR^2 + PR^2 - 2(QR * PR)cos (PRQ)
9^2 = 10^2 + 17^2 - 2(10 * 17) cos (PRQ)
[ 9^2 - 10^2 - 17^2 ] / [ 340 ] = cos (PRQ) = 77/85
sin (PRQ) = sqrt [ 85^2 - 77^2 ] / 85 = 36/85
Law of Sines
XY / sin (PRQ) = XR / sin 90
XY = sin (PRQ) (XR)
XY = (36/85) ( 85/13) = 36 / 13