+0  
 
0
1
1
avatar+1927 

In triangle ABC, \cos \angle A = \frac{1}{8}.  Find the length of angle bisector \overline{AD}.

 
 Jan 1, 2025
 #1
avatar+130060 
+1

Assuming a right triangle ????

 

 

AB  = sqrt [ 8^2  -1^2]  = sqrt (63)

 

Let x = CD       8 - x =  BD

 

Angle BAC = 90

Angle DAC =  45

sin DAC = sqrt (2) / 2

sin BCA = sqrt (63) / 8

 

Because AD is a bisector, we have that

 

CA/CD  = AB/ BD

 

1/x =  sqrt (63)/(8-x)

 

8 - x =  x sqrt (63)

 

x + xsqrt (63) = 8

 

x ( 1 + sqrt 63) = 8

 

x =  8 / ( 1 + sqrt 63) = CD

 

Law of Sines

 

CD / sin CAD   =  DA /  sin DCA 

 

[8/ (1 + sqrt 63)] / (sqrt (2) / 2 ]   = DA / [sqrt (63) / 8]

 

DA = [ sqrt (63) / 8 ] [ 8 / [ 1 + sqrt (63)' / (sqrt (2) /2) 

 

DA  = [sqrt (63) / (1 + sqrt 63) / (1/sqrt 2]

 

DA = sqrt (2) * sqrt (63) / (1 + sqrt 63 ) ≈ 1.26 = length of angle busector

 

cool cool cool

 Jan 2, 2025

2 Online Users

avatar