+0  
 
0
5
1
avatar+826 

In triangle $PQR,$ $M$ is the midpoint of $\overline{QR}.$ Find $PM.$
PQ = 5, PR = 8, QR = 11

 Jul 23, 2024
 #1
avatar+129845 
+1

              P

        5             8

 

Q            M             R

             11

 

Law of Cosines     { cos PMQ = - cos PMR }

PQ^2 = QM^2 + PM^2 - 2(QM * PM) * (-cos PMR)

PR^2 = RM^2 + PM^2 - 2 (RM * PM) * ( cos PMR)

 

5^2 = 5.5^2 + PM^2 + 2(5.5 * PM)cos(PMR)

8^2 = 5.5^2 + PM^2 - 2(5,5 * PM) cos (PMR)          add these

 

5^2 + 8^2  = 2 * 5.5^2 + 2PM^2

 

89 = 60.5 + 2PM^2

 

28.5 / 2 = PM^2

 

14.25 = PM^2

 

sqrt (14.25)  = PM ≈  3.77

 

cool cool cool

 Jul 23, 2024

2 Online Users

avatar
avatar