In triangle $PQR,$ $M$ is the midpoint of $\overline{PQ}.$ Let $X$ be the point on $\overline{QR}$ such that $\overline{PX}$ bisects $\angle QPR,$ and let the perpendicular bisector of $\overline{PQ}$ intersect $\overline{PX}$ at $Y.$ If $PQ = 36$, $PM = 22$, and $MY = 8$, then find the area of triangle PMY.