PQRS is a rectangle with PQ=16 cm and QR=12 cm . If ABCD is a rhombus formed PQRS , what is the radius of the circle incribed in rhombus ABCD?
Let C = (0,0) let B = (8,6)
Then BC = sqrt ( 8^2 + 6^2) = sqrt (100) = 10
Draw OM perpendicular to BC
This will form two right triangles OBM and OCM
OB = 8 OM = r BM = sqrt ( OB^2 -r^2) = sqrt ( 8^2 - r^2)
OC = 6 OM = r MC = sqrt (OC^2 - OM^2) = sqrt ( 6^2 - r^2)
So
BM + MC = BC
sqrt ( 8^2 - r^2) + sqrt ( 6^2 -r^2) = 10
sqrt (64 - r^2) + sqrt (36 - r^2) =10
sqrt (64 -r^2) = 10 - sqrt (36 -r^2) square both sides
64 -r^2 = 100 - 20sqrt (36 - r^2) + 36 -r^2
64 = 136 - 20 sqrt (36 - r^2)
-72 = -20 sqrt (36 - r^2)
72/20 = sqrt (36 -r^2)
18/5 =sqrt (36 - r^2) square both sides
324/25 = 36 - r^2
-576/25 = -r^2
r^2 =576/25 take the positive root
r = 24/5 cm
PQRS is a rectangle with PQ=16 cm and QR=12 cm. If ABCD is a rhombus formed PQRS, what is the radius of the circle inscribed in rhombus ABCD?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AO = 6 cm BO = 8 cm
∠ABO = tan-1(6 / 8)
Radius EO = sin(∠ABO) * BO = 4.8 cm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ or
AB = sqrt(AO2 + BO2) = 10 cm
Radius EO = (AO * BO) / AB = 4.8 cm