+0  
 
0
1
2
avatar+585 

Equilateral triangle ABC is inscribed in a circle.  Let $M$ and $N$ be the midpoints of sides $\overline{AB}$ and $\overline{AC},$ respectively.  Line $MN$ intersects the circle at $P$ and $Q.$  Compute MB/MC.

 Dec 27, 2024
 #1
avatar+939 
0

The answer is MB/MC = 6/5.

 Dec 27, 2024
 #2
avatar+130081 
+1

Let the circle have a radius of 4

 

 

Let A = (0,4)

Let B =  ( 2sqrt 3 , -2 )

AB = sqrt [ (2sqrt 3)^2 + (4--2)^2] = sqrt 48 = 4sqrt (3)  side length of triangle

 

MC = = (1/2) side length = 2sqrt 3

MB = side length * sqrt 3 =  2 sqrt 3 * sqrt 3 =  6

 

MB /MC  =  6 / [ 2sqrt 3]  =  3 /sqrt 3 =  sqrt 3

 

cool cool cool

 Dec 28, 2024

1 Online Users