+0  
 
0
2
2
avatar+833 

In pentagon ABCDE, \overline{AC} bisects \angle BCE and $\overline{AD}$ bisects $\angle BDE.$ If $\angle CBD = 30^\circ$ and $\angle CED = 60^\circ,$ then find $\angle CAD,$ in degrees.

 May 29, 2025
 #2
avatar+15090 
+1

\(\color{blac}Find\ \angle CAD\ in\ degrees.\\\)

Thanks webbinsight for the useful suggestions to solve this tricky task!

 

\(\angle ADB =\angle ADE=\alpha\\ \angle ACB=\angle ACE=\beta\)

The angles intersection AD/EC are twice:

\((120°-\alpha )\ and\ (60°+\alpha )\)

The angles intersection AC/BD are twice:

\((30°+\beta)\ and\ (150°-\beta)\\ \angle CAD=60°+\alpha -\beta\)

In the triangle (intersection AC/BD) - A-D the following applies:

\(\alpha =180°-(150°-\beta )-(60°+\alpha -\beta)\\ \color{blue}\beta = 15°\)

The angles intersection BD/CE are twice:

\((180°-30°-2\beta=120°)\ and\ (60°)\)

In the triangle (intersection AD/CE) -  (intersection CE/BD) - D the following applies:

\((120°)+(60°+\alpha )+(\alpha )=180°\\ \color{blue} \alpha =0\ ?\ ?\ ?\)

 

I ask everyone for help.

laugh !

 Jun 3, 2025
edited by asinus  Jun 3, 2025
edited by asinus  Jun 6, 2025

1 Online Users

avatar