Chords UV, WX, and YZ of a circle are parallel. The distance between chords UV and WX is 1, and the distance between chords WX and YZ is also 1. If UV =6 and YZ = 4, then find WX.
Find WX
\(U(-3,0), V(3,0), Y(-2,2), Z(2,2)\\ UY(-2.5,1)\\ m=\frac{y_Y-y_U}{x_Y-x_U}=\frac{2-0}{(-2)-(-3)}\\ m=2\)
\(f(x)=m(x-x_U)+y_U=2(x-(-3))+0\\ f(x)=2x+6\\ f(x_M)=-\frac{1}{m}(x-x_{UY})+y_{UY}=-\frac{1}{2}(x-(-2.5))+1\\ f(x_M)=-0.5x-0.25\\ x=0\\ \color{blue}M(0,-0.25)\ ,\ Center\ of\ the\ enclosing\ circle\)
\(r=\sqrt{x_Z\ ^2+(y_Z-y_M)^2}=\sqrt{2^2+(2-(-0.25))^2}\\ \color{blue}r=3.0104\ ,\ Radius\ of\ the\ enclosing\ circle\)
\(f_{circ}(x)=y_M\pm \sqrt{r^2-x^2}\\ 1=-0.25+\sqrt{3.0104^2-x^2}\\ (1+0.25)^2=3.0104^2-x^2\\ x_{WX}=\pm \sqrt{3.0104^2-1.25^2}\\ x_{WX}=\pm \sqrt{7.5}=\pm 2.7386 \\ \color{blue}\overline{WX}=5.4772 \)
!