+0  
 
0
1
1
avatar+370 

What is the number of degrees in the smaller angle formed by the hour and minute hands of a clock at $4{:}15?$

 
 Dec 17, 2024
 #1
avatar+1938 
+1

The hour hand will move at a rate of 


\(360°  \space \text{in} \space 12 \space \text{hours} \\ 30° \space \text{in}  \space 1 \space \text{hour} \\ 30°/ 60  =  0.5° \space \text{in}  \text{ one minute}\)

 

So  at   4:15, the hour  hand has  moved   \(4 (30°) +  15(.5°)  =  [120+ 7.5]° = 127.5°\)from 12 o'clock

 

The minute hand  will move  at a rate of \(360°/ 60  = 6°\) per minute

So at 4:15 it will have moved  \([15* 6]°  = 90°\)  from the top of the hour

 

So...the smaller angle formed by the hands\(  = 127.5 - 90 = 37.5^\circ\)

 

May have made an error....

 

Thanks! :)

 Dec 17, 2024
edited by NotThatSmart  Dec 17, 2024

4 Online Users