+0

# geometry

0
122
2

We have triangle ABC where AB = AC and AD is an altitude.  Meanwhile, E is a point on AC such that AB is parallel to  DE.  If BC = 15 and the area of triangle ABC is 200, what is the area of ABDE?

Dec 16, 2020

### 2+0 Answers

#1
+2

We have triangle ABC where AB = AC and AD is an altitude.  Meanwhile, E is a point on AC such that AB is parallel to  DE.  If BC = 15 and the area of triangle ABC is 200, what is the area of ABDE?

[ABDE] = 3/4[ABC] Dec 16, 2020
#2
+1

Area ABC  = (1/2) BC * AD

200  = (1/2) 15 * AD

400  = 15 * AD

400 / 15  = AD

80/3  = AD

See the following  image : Since  AB is parallel to DE.....triangle  EDC   is  similar to triangle ABC

And  DC  and   BC   are corresponding  sides

Sinc AB = AC....then AD  bisects BC...so

DC =(1/2) BC

So the scale factor  of  EDC to ABC  = 1/2

So the area  of  EDC to ABC =  (scale factor)^2  (area of ABC ) =  (1/4) (200)   = 50 = [EDC ]

So   [ ABDE  ]  =  [ ABC ] - [EDC ] =   200  - 50   =   150   Dec 16, 2020