Find BC.
Hello Guest!
\(f(x)=\sqrt{22^2-x^2}\\ g(x)=\sqrt{13^2-x^2}+13\\ \sqrt{22^2-x^2}=\sqrt{13^2-x^2} +13\\ 22^2-x^2=13^2-x^2+2\cdot 13\cdot \sqrt{13^2-x^2} +13^2\\ 13^2-x^2= (\frac{22^2-13^2-13^2}{26})^2 \\ x=\sqrt{13^2- (\frac{22^2-13^2-13^2}{26})^2}\)
\(x=11.725\\ \overline{BC}=2x\)
\(\overline{BC}=23.449\)
!
13 is the circumradius = C
C = 13 = product of the sides / [ 4 Area ]
Let x = BC
13 = (22 * 22 * x)
_________________________________________________
sqrt [ (22 + 22 + x ) ( 22 + 22 - x) ( x + 22 - 22) (x + 22 - 22) ]
13 = [ 22 * 22 * x ]
________________________
sqrt [ ( 44 + x) ( 44 - x) (x^2) ]
13 = [ 22 * 22 * x ]
________________________
x * sqrt [ (44 + x) * (44 - x) ]
sqrt [ (44 + x) (44 - x) ] = 484 / 13
sqrt [ 1936 - x^2 ] = 484/13 square both sides
1936 - x^2 = (484)^2 / 169
x^2 = 1936 - (484)^2 / 169
x^2 = 92928 / 169
x = sqrt [ 92928 / 169 ] ≈ 23.449 = BC