+0  
 
0
21
1
avatar+448 

Points $A,$ $B,$ and $C$ are given in the coordinate plane.  There exists a point $Q$ and a constant $k$ such that for any point $P$,
PA^2 + PB^2 + PC^2 = 3PQ^2 + k.
If $A = (2,4),$ $B = (-3,1),$ and $C = (1,7)$, then find the constant $k$.

 Dec 7, 2024
 #1
avatar+130458 
+1

Let P = (x,y)

 

PA^2 + PB^2 + PC^2  =

 

(x -2)^2 + ( y- 4)^2  + (x + 3)^2 + (y -1)^2 + (x-1)^2 + ( y-7)^2 ....simplifying, we  have

 

3x^2 +3y^2 -24y + 80   complete the square on y

 

3[ (x-0)^2 + y^2  - 24y  + 144] + 80 - 3(144)  =

 

3 [ ( x-0)^2 + (y- 12)^2 ] - 352  =  3PQ^2 + k

 

Q= (0 , 12)

 

k = -352

 

cool cool cool

 Dec 7, 2024

2 Online Users

avatar
avatar