In triangle PQR, M is the midpoint of ¯QR. Find PM. PQ = 5, PR = 8, QR = 11
Find PM.
fQ(x)=√52−x2fR(x)=√82−(x−11)225−x2P=64−x2P+22xP−121xP=121+25−6422xP=3.¯72yP=3.333
P(3.¯72, 3.333)M(5.5, 0)¯PM=√(xM−xP)2+y2P=√(5.5−3.727)2+3.3332¯PM=3.775
!